
SOLUTIONS TO CHAPTER 1

Problem 1.1
(a)  Since the growth rate of a variable equals the time derivative of its log, as shown by equation (1.10) 
in the text, we can write
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Since the log of the product of two variables equals the sum of their logs, we have
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or simply
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(b)  Again, since the growth rate of a variable equals the time derivative of its log, we can write
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Since the log of the ratio of two variables equals the difference in their logs, we have
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(c)  We have
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Using the fact that ln[X(t) ] = lnX(t), we have
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where we have used the fact that  is a constant.

Problem 1.2
(a)  Using the information provided in the question, 
the path of the growth rate of X,  ( ) ( )X t X t , is 
depicted in the figure at right.

From time 0 to time t1 , the growth rate of X is 
constant and equal to a > 0.  At time t1 , the growth 
rate of X drops to 0.  From time t1 to time t2 , the 
growth rate of X rises gradually from 0 to a.  Note that 
we have made the assumption that  ( ) ( )X t X t rises at 
a constant rate from t1 to t2 .  Finally, after time t2 , the 
growth rate of X is constant and equal to a again.

 ( )

( )

X t

X t

       a

       0             t1                      t2              time



     Solutions to Chapter 11-2

(b)  Note that the slope of lnX(t) plotted against time 
is equal to the growth rate of X(t).  That is, we know

     
d X t

dt

X t

X t

ln ( )  ( )

( )


(See equation (1.10) in the text.)

From time 0 to time t1 the slope of lnX(t) equals 
a > 0.  The lnX(t) locus has an inflection point at t1 , 
when the growth rate of X(t) changes discontinuously 
from a to 0.  Between t1 and t2 , the slope of lnX(t) 
rises gradually from 0 to a.  After time t2 the slope of 
lnX(t) is constant and equal to a > 0 again.

Problem 1.3
(a)  The slope of the break-even investment line is 
given by (n + g + ) and thus a fall in the rate of 
depreciation, , decreases the slope of the break-
even investment line.

The actual investment curve, sf(k) is unaffected.

From the figure at right we can see that the balanced-
growth-path level of capital per unit of effective 
labor rises from k* to k*NEW .

(b)  Since the slope of the break-even investment 
line is given by (n + g + ), a rise in the rate of 
technological progress, g, makes the break-even 
investment line steeper.

The actual investment curve, sf(k), is unaffected.

From the figure at right we can see that the 
balanced-growth-path level of capital per unit of 
effective labor falls from k* to k*NEW .
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(c)  The break-even investment line, (n + g + )k, is 
unaffected by the rise in capital's share, .

The effect of a change in  on the actual investment 
curve, sk, can be determined by examining the 
derivative (sk)/.  It is possible to show that

(1)  




sk

sk k ln .

For 0 <  < 1, and for positive values of k, the sign 
of (sk)/ is determined by the sign of lnk.  For 

lnk > 0, or k > 1,  sk  0 and so the new actual 
investment curve lies above the old one.  For 

lnk < 0 or k < 1,  sk  0 and so the new actual investment curve lies below the old one.  At k = 1, 
so that lnk = 0, the new actual investment curve intersects the old one.

In addition, the effect of a rise in  on k* is ambiguous and depends on the relative magnitudes of s and 
(n + g + ).  It is possible to show that a rise in capital's share, , will cause k* to rise if s > (n + g + ).  
This is the case depicted in the figure above.

(d)  Suppose we modify the intensive form of the 
production function to include a non-negative 
constant, B, so that the actual investment curve is 
given by sBf(k), B > 0.

Then workers exerting more effort, so that output 
per unit of effective labor is higher than before, can 
be modeled as an increase in B.  This increase in B 
shifts the actual investment curve up.

The break-even investment line, (n + g + )k, is 
unaffected.

From the figure at right we can see that the balanced-growth-path level of capital per unit of effective 
labor rises from k* to k*NEW .

Problem 1.4
(a)  At some time, call it t0 , there is a discrete upward jump in the number of workers.  This reduces the 
amount of capital per unit of effective labor from k* to kNEW .  We can see this by simply looking at the 
definition, k  K/AL .   An increase in L without a jump in K or A causes k to fall.  Since f ' (k) > 0, this 
fall in the amount of capital per unit of effective labor reduces the amount of output per unit of effective 
labor as well.  In the figure below, y falls from y* to yNEW .
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(b)  Now at this lower kNEW , actual 
investment per unit of effective 
labor exceeds break-even investment 
per unit of effective labor.  That is, 
sf(kNEW ) > (g + )kNEW .  The 
economy is now saving and 
investing more than enough to offset 
depreciation and technological 
progress at this lower kNEW .  Thus k 
begins rising back toward k*.  As 
capital per unit of effective labor 
begins rising, so does output per unit 
of effective labor.  That is, y begins 
rising from yNEW back toward y*.

(c)  Capital per unit of effective labor will continue to rise until it eventually returns to the original level 
of k*.  At k*, investment per unit of effective labor is again just enough to offset technological progress 
and depreciation and keep k constant.  Since k returns to its original value of k* once the economy again 
returns to a balanced growth path, output per unit of effective labor also returns to its original value of
y* = f(k*).

Problem 1.5
(a)  The equation describing the evolution of the capital stock per unit of effective labor is given by
(1)   ( ) ( )k sf k n g k     .
Substituting in for the intensive form of the Cobb-Douglas, f(k) = k, yields

(2)   ( )k sk n g k     .

On the balanced growth path, k is zero; investment per unit of effective labor is equal to break-even 
investment per unit of effective labor and so k remains constant.  Denoting the balanced-growth-path 
value of k as k*, we have sk* = (n + g + )k*.  Rearranging to solve for k* yields

(3)   k s n g* ( )
( )

  



1 1

.

To get the balanced-growth-path value of output per unit of effective labor, substitute equation (3) into 
the intensive form of the production function, y = k:

(4)   y s n g* ( )
( )

  



 1

.

Consumption per unit of effective labor on the balanced growth path is given by c* = (1 - s)y*.  
Substituting equation (4) into this expression yields

(5)   c s s n g* ( ) ( )
( )

   


1
1


 

.

(b)  By definition, the golden-rule level of the capital stock is that level at which consumption per unit of 
effective labor is maximized.  To derive this level of k, take equation (3), which expresses the balanced-
growth-path level of k, and rearrange it to solve for s:
(6)  s = (n + g + )k*1-.
Now substitute equation (6) into equation (5):

(7)    c n g k n g k n g* ( ) * ( ) * ( )
( )

         
1 1 1 1

     
.

After some straightforward algebraic manipulation, this simplifies to
(8)  c* = k* - (n + g + )k*.

Investment
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Equation (8) states that consumption per unit of effective labor is equal to output per unit of effective 
labor, k*, less actual investment per unit of effective labor.  On the balanced growth path, actual 
investment per unit of effective labor is the same as break-even investment per unit of effective labor,
(n + g + )k*.

Now use equation (8) to maximize c* with respect to k*.  The first-order condition is given by

(9)     c k k n g* * * ( )    1 0,
or simply
(10)  k*-1 = (n + g + ).
Note that equation (10) is just a specific form of the general condition that implicitly defines the golden-
rule level of capital per unit of effective labor, given by f ' (k*) = (n + g + ).  Equation (10) has a 
graphical interpretation: it defines the level of k at which the slope of the intensive form of the 
production function is equal to the slope of the break-even investment line.  Solving equation (10) for the 
golden-rule level of k yields

(11)   k n gGR* ( )
( )
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.

(c)  To get the saving rate that yields the golden-rule level of k, substitute equation (11) into (6):

(12)   s n g n gGR     
 

( ) ( )
( ) ( )

  
 1 1

,

which simplifies to
(13)  sGR = .
With a Cobb-Douglas production function, the saving rate required to reach the golden rule is equal to 
the elasticity of output with respect to capital or capital's share in output (if capital earns its marginal 
product).

Problem 1.6
(a)  Since there is no technological progress, we can carry out the entire analysis in terms of capital and 
output per worker rather than capital and output per unit of effective labor.  With A constant, they behave 
the same.  Thus we can define y  Y/L and k  K/L.

The fall in the population growth rate makes the
break-even investment line flatter.  In the 
absence of technological progress, the per unit 
time change in k, capital per worker, is given 
by  ( ) ( )k sf k n k   .  Since k was 0 before 
the decrease in n – the economy was on a 
balanced growth path – the decrease in n causes 
k to become positive.  At k*, actual investment 
per worker, sf(k*), now exceeds break-even 
investment per worker, (nNEW + )k*.  Thus k 
moves to a new higher balanced growth path 
level.  See the figure at right.

As k rises, y – output per worker – also rises.  
Since a constant fraction of output is saved, c –
consumption per worker – rises as y rises.  This 
is summarized in the figures below.

   y*NEW f(k)
(n + )k
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sf(k)

       k*          k*NEW    k
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(b)  By definition, output can be written as 
Y  Ly.  Thus the growth rate of output is 
  Y Y L L y y  .  On the initial balanced growth 

path, y y  0 – output per worker is constant – so 
 Y Y L L n  .  On the final balanced growth 

path, y y  0 again – output per worker is 
constant again – and so  Y Y L L n nNEW   .  
In the end, output will be growing at a 
permanently lower rate.

What happens during the transition?  Examine the production function Y = F(K,AL).  On the initial 
balanced growth path AL, K and thus Y are all growing at rate n.  Then suddenly AL begins growing at 
some new lower rate nNEW.  Thus suddenly Y will be growing at some rate between that of K (which is 
growing at n) and that of AL (which is growing at nNEW).  Thus, during the transition, output grows more 
rapidly than it will on the new balanced growth path, but less rapidly than it would have without the 
decrease in population growth.  As output growth gradually slows down during the transition, so does 
capital growth until finally K, AL, and thus Y are all growing at the new lower nNEW.

Problem 1.7
The derivative of y* = f(k*) with respect to n is given by
(1)  y*/n = f '(k*)[k*/n].
To find k*/n, use the equation for the evolution of the capital stock per unit of effective labor, 
 ( ) ( )k sf k n g k     .  In addition, use the fact that on a balanced growth path, k  0 , k = k* and thus 
sf(k*) = (n + g + )k*.  Taking the derivative of both sides of this expression with respect to n yields

(2)  sf k
k

n
n g

k
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*
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,

and rearranging yields
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Substituting equation (3) into equation (1) gives us
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Rearranging the condition that implicitly defines k*, sf(k*) = (n + g + )k*, and solving for s yields
(5)  s = (n + g + )k*/f(k*).
Substitute equation (5) into equation (4):

(6)  


  

y

n

f k k

n g f k k f k n g

* ( *) *

[( ) ( *) * / ( *)] ( )



     

.

To turn this into the elasticity that we want, multiply both sides of equation (6) by n/y*:
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Using the definition that K (k*)  f '(k*)k*/f(k*) gives us
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Now, with K (k*) = 1/3, g = 2% and  = 3%, we need to calculate the effect on y* of a fall in n from 2% 
to 1%.  Using the midpoint of n = 0.015 to calculate the elasticity gives us

(9)  
n

y

y

n*

* .

( . . . )

/

/
.




 

  







  

0 015

0 015 0 02 0 03

1 3

1 1 3
012 .

So this 50% drop in the population growth rate, from 2% to 1%, will lead to approximately a 6% increase 
in the level of output per unit of effective labor, since (-0.50)(-0.12) = 0.06.  This calculation illustrates 
the point that observed differences in population growth rates across countries are not nearly enough to 
account for differences in y that we see.

Problem 1.8
(a)  A permanent increase in the fraction of output that is devoted to investment from 0.15 to 0.18 
represents a 20 percent increase in the saving rate.  From equation (1.27) in the text, the elasticity of 
output with respect to the saving rate is

(1)  
s

y

y
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k
K
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,

where K (k*) is the share of income paid to capital (assuming that capital is paid its marginal product).

Substituting the assumption that K (k*) = 1/3 into equation (1) gives us

(2)  
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Thus the elasticity of output with respect to the saving rate is 1/2.  So this 20 percent increase in the 
saving rate – from s = 0.15 to sNEW = 0.18 – causes output to rise relative to what it would have been by 
about 10 percent.  [Note that the analysis has been carried out in terms of output per unit of effective 
labor.  Since the paths of A and L are not affected, however, if output per unit of effective labor rises by 
10 percent, output itself is also 10 percent higher than what it would have been.]

(b)  Consumption rises less than output.  Output ends up 10 percent higher than what it would have been.  
But the fact that the saving rate is higher means that we are now consuming a smaller fraction of output.  
We can calculate the elasticity of consumption with respect to the saving rate.  On the balanced growth 
path, consumption is given by
(3)  c* = (1 - s)y*.
Taking the derivative with respect to s yields
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(4)  
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To turn this into an elasticity, multiply both sides of equation (4) by s/c*:
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where we have substituted c* = (1 - s)y* on the right-hand side.  Simplifying gives us
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From part (a), the second term on the right-hand side of (6), the elasticity of output with respect to the 
saving rate, equals 1/2.  We can use the midpoint between s = 0.15 and sNEW = 0.18 to calculate the 
elasticity:

(7)  
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Thus the elasticity of consumption with respect to the saving rate is approximately 0.3.  So this 20% 
increase in the saving rate will cause consumption to be approximately 6% above what it would have 
been.

(c)  The immediate effect of the rise in investment as a fraction of output is that consumption falls.  
Although y* does not jump immediately – it only begins to move toward its new, higher balanced-
growth-path level – we are now saving a greater fraction, and thus consuming a smaller fraction, of this 
same y*.  At the moment of the rise in s by 3 percentage points – since c = (1 - s)y* and y* is unchanged 
– c falls.  In fact, the percentage change in c will be the percentage change in (1 - s).  Now, (1 - s) falls 
from 0.85 to 0.82, which is approximately a 3.5 percent drop.  Thus at the moment of the rise in s, 
consumption falls by about three and a half percent.

We can use some results from the text on the speed of convergence to determine the length of time it 
takes for consumption to return to what it would have been without the increase in the saving rate.  After 
the initial rise in s, s remains constant throughout.  Since c = (1 - s)y, this means that consumption will 
grow at the same rate as y on the way to the new balanced growth path.  In the text it is shown that the 
rate of convergence of k and y, after a linear approximation, is given by  = (1 - K )(n + g +).  With
(n + g + ) equal to 6 percent per year and K = 1/3, this yields a value for of about 4 percent.  This 
means that k and y move about 4 percent of the remaining distance toward their balanced-growth-path 
values of k* and y* each year.  Since c is proportional to y, c  = (1 - s)y, it also approaches its new 
balanced-growth-path value at that same constant rate.  That is, analogous to equation (1.31) in the text, 
we could write

(8)  c t c e c cK n g t( ) * [ ( ) *]( )( )     1 0  ,
or equivalently

(9)  e
c t c

c c
t 




 ( ) *

( ) *0
.

The term on the right-hand side of equation (9) is the fraction of the distance to the balanced growth path 
that remains to be traveled.

We know that consumption falls initially by 3.5 percent and will eventually be 6 percent higher than it 
would have been.  Thus it must change by 9.5 percent on the way to the balanced growth path.  It will 
therefore be equal to what it would have been about 36.8 percent (3.5%/9.5%  36.8%) of the way to the 
new balanced growth path.  Equivalently, this is when the remaining distance to the new balanced growth 
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path is 63.2 percent of the original distance.  In order to determine the length of time this will take, we 
need to find a t* that solves

(10)  632.0e *t  .
Taking the natural logarithm of both sides of equation (10) yields
(11)  -t* = ln(0.632).
Rearranging to solve for t gives us
(12)  t* = 0.459/0.04,
and thus
(13)  t*  11.5  years.
It will take a fairly long time – over a decade – for consumption to return to what it would have been in 
the absence of the increase in investment as a fraction of output.

Problem 1.9
(a)  Define the marginal product of labor to be w  F(K,AL)/L.  Then write the production function as 
Y = ALf(k) = ALf(K/AL).  Taking the partial derivative of output with respect to L yields
(1)  w  Y/L = ALf ' (k)[-K/AL2 ] + Af(k) = A[(-K/AL)f ' (k) + f(k)] = A[f(k) - kf ' (k)],
as required.

(b)  Define the marginal product of capital as r  [F(K,AL)/K] - .  Again, writing the production 
function as Y = ALf(k) = ALf(K/AL) and now taking the partial derivative of output with respect to K 
yields
(2)  r  [Y/K] -  = ALf ' (k)[1/AL] -  = f ' (k) - .
Substitute equations (1) and (2) into wL + rK:
(3)  wL + rK = A[f(k) - kf ' (k)] L + [f ' (k) - ]K = ALf(k) - f ' (k)[K/AL]AL + f ' (k)K - K.
Simplifying gives us
(4)  wL + rK = ALf(k) - f ' (k)K + f ' (k)K - K = Alf(k) - K  ALF(K/AL, 1) - K.
Finally, since F is constant returns to scale, equation (4) can be rewritten as
(5)  wL + rK = F(ALK/AL, AL) - K = F(K, AL) - K.

(c)  As shown above, r = f '(k) - .  Since  is a constant and since k is constant on a balanced growth 
path, so is f '(k) and thus so is r.  In other words, on a balanced growth path, r r  0.  Thus the Solow 
model does exhibit the property that the return to capital is constant over time.

Since capital is paid its marginal product, the share of output going to capital is rK/Y.  On a balanced 
growth path,

(6)  
 
 
rK Y

rK Y
r r K K Y Y n g n g



   ( ) ( )        0 0.

Thus, on a balanced growth path, the share of output going to capital is constant.  Since the shares of 
output going to capital and labor sum to one, this implies that the share of output going to labor is also 
constant on the balanced growth path.

We need to determine the growth rate of the marginal product of labor, w, on a balanced growth path.  As 
shown above, w = A[f(k) - kf '(k)].  Taking the time derivative of the log of this expression yields the 
growth rate of the marginal product of labor:

(7)  
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On a balanced growth path k  0 and so w w g .  That is, on a balanced growth path, the marginal 
product of labor rises at the rate of growth of the effectiveness of labor.

(d)  As shown in part (c), the growth rate of the marginal product of labor is

(8)  
 ( ) 

( ) ( )

w

w
g

kf k k

f k kf k
 

 
 

.

If k < k*, then as k moves toward k*, w w g .  This is true because the denominator of the second term 
on the right-hand side of equation (8) is positive because f(k) is a concave function.  The numerator of 
that same term is positive because k and k are positive and f '' (k) is negative.  Thus, as k rises toward k*, 
the marginal product of labor grows faster than on the balanced growth path.  Intuitively, the marginal 
product of labor rises by the rate of growth of the effectiveness of labor on the balanced growth path.  As 
we move from k to k*, however, the amount of capital per unit of effective labor is also rising which also 
makes labor more productive and this increases the marginal product of labor even more.

The growth rate of the marginal product of capital, r, is

(9)  
  ( )

( )

( ) 

( )

r

r

f k

f k

f k k

f k










.

As k rises toward k*, this growth rate is negative since f ' (k) > 0, f '' (k) < 0 and k > 0.  Thus, as the 
economy moves from k to k*, the marginal product of capital falls.  That is, it grows at a rate less than on 
the balanced growth path where its growth rate is 0.

Problem 1.10
(a)  By definition a balanced growth path occurs when all the variables of the model are growing at 
constant rates.  Despite the differences between this model and the usual Solow model, it turns out that 
we can again show that the economy will converge to a balanced growth path by examining the behavior 
of k  K/AL.

Taking the time derivative of both sides of the definition of k  K/AL gives us

(1)  
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Substituting the capital-accumulation equation,   ( , )K F K AL K K K    , and the constant growth 

rates of the labor force and technology,  L L n and A A g  , into equation (1) yields

(2)  
 

( , )
( )

( , )
( )k

F K AL K K K

AL
n g k

F K AL

K
k k n g k


     

   


 .

Substituting F(K,AL)/K = f '(k) into equation (2) gives us  ( ) ( )k f k k k n g k     or simply

(3)    ( ) ( )k f k n g k     .

Capital per unit of effective labor will be constant when k  0, i.e. when [f ' (k) - (n + g + )] k = 0.  This 
condition holds if k = 0 (a case we will ignore) or f ' (k) - (n + g + ) = 0.  Thus the balanced-growth-path 
level of the capital stock per unit of effective labor is implicitly defined by f '(k*) = (n + g + ).  Since 
capital per unit of effective labor, k  K/AL, is constant on the balanced growth path, K must grow at the 
same rate as AL, which grows at rate n + g.  Since the production function has constant returns to capital 
and effective labor, which both grow at rate n + g on the balanced growth path, output must also grow at 
rate n + g on the balanced growth path.  Thus we have found a balanced growth path where all the 
variables of the model grow at constant rates.
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The next step is to show that the economy actually converges to this balanced growth path.  At k = k*,
f ' (k) = (n + g +).  If k > k*, f ' (k) < (n + g + ).  This follows from the assumption that f '' (k) < 0 which 
means that f ' (k) falls as k rises.  Thus if k > k*, we have k  0 so that k will fall toward its balanced-
growth-path value.  If k < k*, f ' (k) > (n + g + ).  Again, this follows from the assumption that f '' (k) < 0 
which means that f ' (k) rises as k falls.  Thus if k < k*, we have k  0 so that k will rise toward its 
balanced-growth-path value.  Thus, regardless of the initial value of k (as long as it is not zero), the 
economy will converge to a balanced growth path at k*, where all the variables in the model are growing 
at constant rates.

(b)  The golden-rule level of k – the level of k that maximizes consumption per unit of effective labor – is 
defined implicitly by f '(kGR) = (n +g + ).  This occurs when the slope of the production function equals 
the slope of the break-even investment line.  Note that this is exactly the level of k that the economy 
converges to in this model where all capital income is saved and all labor income is consumed.

In this model, we are saving capital's contribution to output, which is the marginal product of capital 
times the amount of capital.  If that contribution exceeds break-even investment, (n + g + )k, then k 
rises.  If it is less than break-even investment, k falls.  Thus k settles down to a point where saving, the 
marginal product of capital times k, equals break-even investment, (n + g + )k.  That is, the economy 
settles down to a point where f ' (k)k = (n + g + )k or equivalently f ' (k) = (n + g + ).

Problem 1.11
We know that y is determined by k but since k = g(y), where g() = f –1(), we can write )y(yy   .  

When k = k* and thus y = y*, y =0.  A first-order Taylor-series approximation of )y(y around y = y* 

therefore yields

(1)  *)yy(
y

y
y

*yy





















 .

Let  denote 
*yy

y)y(y   .  With this definition, equation (1) becomes

(2)  *]y)t(y[)t(y  .

Equation (2) implies that in the vicinity of the balanced growth path, y moves toward y* at a speed 
approximately proportional to its distance from y*. That is, the growth rate of y(t) – y* is approximately 
constant and equal to -.  This implies

(3)  *]y)0(y[e*y)t(y t   ,

where y(0) is the initial value of y.  We now need to determine .

Taking the time derivative of both sides of the production function,
(4)  y = f(k),
yields

(5)  k)k(fy   .

The equation of motion for capital is given by

(6)  k)gn()k(sfk  .

Substituting equation (6) into equation (5) yields
(7)  ]k)gn()k(sf)[k(fy  .

Equation (7) expresses y in terms of k.  But k = g(y) where g() = f –1().  Thus we can write
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(8)  


































 *yy*yy*yy y

k

k

y

y

y 
.

Taking the derivative of y with respect to k gives us

(9)  )]gn()k(fs)[k(f]k)gn()k(sf)[k(f
k

y



 

.

On the balanced growth path, sf(k*) = (n + g + )k* and thus

(10)  )]gn(*)k(fs*)[k(f
k

y

*yy








.

Now, since k = g(y) where g() = f –1(),

(11)  
*)k(f

1

k

y

1

y

k

*yy

*yy














.

Substituting equations (10) and (11) into equation (8) yields

(12)  
*)k(f

1
)]gn(*)k(fs*)[k(f

y

y

*yy









,

or simply

(13)  )gn(*)k(fs
y

y

*yy








.

And thus

(14)  *)k(fs)gn(
y

y

*yy









.

Since s = (n + g + )k*/f(k*) on the balanced growth path, we can rewrite (14) as

(15)  
*)k(f

*)k(f*k)gn(
)gn(

y

y

*yy











.

Now use the definition that K  kf '(k)/f(k) to rewrite (15) as

(16)  )gn(*)]k(1[
y

y
K

*yy









.

Thus y converges to its balanced-growth-path value at rate )gn(*)]k(1[ K  , the same rate at 

which k converges to its balanced-growth-path value.

Problem 1.12
(a)  The production function with capital-augmenting technological progress is given by

(1)   Y t A t K t L t( ) ( ) ( ) ( )  1 .

Dividing both sides of equation (1) by A(t)/(1 - )L(t) yields

(2)  
Y t

A t L t

A t K t

A t L t

L t

A t L t

( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )( ) ( ) ( )   



 



1 1 1

1

  





















 ,

and simplifying:
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(3)  
Y t

A t L t

A t K t

L t
A t

A t A t K t

L t

( )

( ) ( )

( ) ( )

( )
( )

( ) ( ) ( )

( )( )

( ) ( )

 

  


  

1

1 1 1 1 1



 


  



























,

and thus finally

(4)  
Y t

A t L t

K t

A t L t

( )

( ) ( )

( )

( ) ( )( ) ( )   



1 1 








 .

Now, defining   /(1 - ), k(t)  K(t)/A(t)L(t) and y(t)  Y(t)/A(t)L(t) yields
(5)  y(t) = k(t).

In order to analyze the dynamics of k(t), take the time derivative of both sides of k(t)  K(t)/A(t)L(t):

(6)  
   

 
 ( )

 ( ) ( ) ( ) ( ) ( )  ( ) ( )  ( ) ( )

( ) ( )
k t

K t A t L t K t A t A t L t L t A t

A t L t


   



 1

2 ,

(7)   ( )
 ( )

( ) ( )

( )

( ) ( )

 ( )

( )

 ( )

( )
k t

K t

A t L t

K t

A t L t

A t

A t

L t

L t
  









   ,

and then using k(t)  K(t)/A(t)L(t),  ( ) ( )A t A t   and  ( ) ( )L t L t n yields

(8)   ( )  ( ) ( ) ( ) ( ) ( )k t K t A t L t n k t    .
The evolution of the total capital stock is given by the usual
(9)   ( ) ( ) ( )K t sY t K t   .
Substituting equation (9) into (8) gives us

(10)   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k t sY t A t L t K t A t L t n k t sy t n k t            .
Finally, using equation (5), y(t) = k(t), we have

(11)  ( ) ( ) ( ) ( )k t sk t n k t      .

Equation (11) is very similar to the basic 
equation governing the dynamics of the Solow 
model with labor-augmenting technological 
progress.  Here, however, we are measuring in 
units of A(t)L(t) rather than in units of 
effective labor, A(t)L(t).  Using the same 
graphical technique as with the basic Solow 
model, we can graph both components of  ( )k t .  
See the figure at right.

When actual investment per unit of A(t)L(t), 
sk(t), exceeds break-even investment per unit 
of A(t)L(t), given by ( + n + )k(t), k will 
rise toward k*.  When actual investment per 
unit of A(t)L(t) falls short of break-even investment per unit of A(t)L(t), k will fall toward k*.  Ignoring 
the case in which the initial level of k is zero, the economy will converge to a situation in which k is 
constant at k*.  Since y = k, y will also be constant when the economy converges to k*.

The total capital stock, K, can be written as ALk.  Thus when k is constant, K will be growing at the 
constant rate of  + n.  Similarly, total output, Y, can be written as ALy.  Thus when y is constant, 

         ( + n + )k(t)

       sk(t)

         k*    k(t)  K(t)/A(t)L(t)
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output grows at the constant rate of  + n as well.  Since L and A grow at constant rates by assumption, 
we have found a balanced growth path where all the variables of the model grow at constant rates.

(b)  The production function is now given by

(12) Y t J t L t( ) ( ) ( )  1 .

Define J t( )  J(t)/A(t).  The production function can then be written as

(13)   Y t A t J t L t( ) ( ) ( ) ( )  1 .

Proceed as in part (a).  Divide both sides of equation (13) by A(t)/(1 - )L(t) and simplify to obtain

(14)  
Y t

A t L t

J t

A t L t

( )

( ) ( )

( )

( ) ( )( ) ( )   



1 1 








 .

Now, defining   /(1 - ), j t( )  J t( ) /A(t)L(t) and y(t)  Y(t)/A(t)L(t) yields
(15)  y(t) = j t( ) .

In order to analyze the dynamics of j t( ) , take the time derivative of both sides of j t( )  J t( ) /A(t)L(t):

(16)  
   

 


( ) ( ) ( ) ( ) ( )  ( ) ( )  ( ) ( )

( ) ( )
j

J t A t L t J t A t A t L t L t A t

A t L t


   



 1

2 ,

(17)  ( )
( )

( ) ( )

( )

( ) ( )

 ( )

( )

 ( )

( )
j t

J t

A t L t

J t

A t L t

A t

A t

L t

L t
  









   ,

and then using j t( )  J t( ) /A(t)L(t),  ( ) ( )A t A t   and  ( ) ( )L t L t n yields

(18)  ( ) ( ) ( ) ( ) ( ) ( )j t J t A t L t n j t    .

The next step is to get an expression for ( )J t .  Take the time derivative of both sides of J t J t A t( ) ( ) ( ) :

(19)  ( )
( ) ( ) ( )  ( )

( )

( )

( )

 ( )

( )

( )

( )
J t

J t A t J t A t

A t

J t

A t

A t

A t

J t

A t



 2 .

Now use J t J t A t( ) ( ) ( ) ,  ( ) ( )A t A t   and ( ) ( ) ( ) ( )J t sA t Y t J t   to obtain

(20)  ( )
( ) ( )

( )

( )

( )
( )J t

sA t Y t

A t

J t

A t
J t  


 ,

or simply

(21)  ( ) ( ) ( ) ( )J t sY t J t    .
Substitute equation (21) into equation (18):

(22)   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j t sY t A t L t J t A t L t n j t sy t n j t               1 .

Finally, using equation (15), y(t) = j t( )  , we have

(23)   ( ) ( ) ( ) ( )j t sj t n j t       1 .

Using the same graphical technique as in the basic Solow model, we can graph both components of ( )j t .
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See the figure at right.  Ignoring the 
possibility that the initial value of j is 
zero, the economy will converge to a 
situation where j is constant at j *.  
Since y = j , y will also be constant 
when the economy converges to j *.

The level of total output, Y, can be
written as ALy.  Thus when y is 
constant, output grows at the constant 
rate of   + n.  

By definition, J A Lj  .  Once the 
economy converges to the situation 
where j is constant, J grows at the 
constant rate of  + n.  Since J  J A, the effective capital stock, J, grows at rate  + n +  or n + (1 + 
).  Thus the economy does converge to a balanced growth path where all the variables of the model are 
growing at constant rates.

(c)  On the balanced growth path, ( )j t = 0 and thus from equation (23):

(24)     sj n j j s n              ( ) ( )1 11 ,

and thus

(25)    j s n* ( )
( )

   


  


1
1 1

.

Substitute equation (25) into equation (15) to get an expression for output per unit of A(t)L(t) on the 
balanced growth path:

(26)    y s n* ( )
( )

   


  
 

1
1

.

Take the derivative of y* with respect to s:

(27)     






      

 
y

s

s

n n

*
( )








   











  











 

1 1

1

1

1 1

.

In order to turn this into an elasticity, multiply both sides by s/y* using the expression for y* from 
equation (26) on the right-hand side:

(28)       






         

   
y

s

s

y

s

n n
s

s

n

*

*

( ) ( )








   











  











  











   

1 1

1

1 1

1 1 1

.

Simplifying yields

(29)  
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y

n
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1

1

1
,

and thus finally

(30)  








y

s

s

y

*

*


1
.

(d)  A first-order Taylor approximation of y around the balanced-growth-path value of y = y* will be of 
the form

   [n +  +(1 + )] j t( )

            s j t( ) 

           j *             j t J t A t L t( ) ( ) ( ) ( ) 
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(31)     *
*

y y y y y
y y

 


  .

Taking the time derivative of both sides of equation (15) yields

(32)   y j j   1 .
Substitute equation (23) into equation (32):

(33)     ( )y j sj n j        1 1 ,

or

(34)    y s j j n         2 1 1 .

Equation (34) expresses y in terms of j .  We can express j in terms of y: since y = j , we can write 
j = y1/.  Thus  y /y evaluated at y = y* is given by

(35)    










     


    

( ) ( )
* * *

( ) ( )y

y

y

j

j

y
s j j n y

y y y y y y  

  



























     







2 1 1
12 1 2 1 1 .

Now, y(1 - )/ is simply j 1 -  since y = j  and thus

(36)    


             

( ) ( ) ( ) ( )
*

( ) ( ) ( )y

y
s j j n s j n

y y

                 2 1 1 2 1 12 1 1 1 1 1 .

Finally, substitute out for s by rearranging equation (25) to obtain  s j n   1 1   ( ) and thus

(37)     


        

( ) ( ) ( )
*

y

y
j n j n

y y

         1 11 2 1 1 ,

or simply

(38)   


   


( ) ( )

*

y

y
n

y y

     1 1 .

Substituting equation (38) into equation (31) gives the first-order Taylor expansion:
(39)      ( ) ( ) *y n y y      1 1    .

Solving this differential equation (as in the text) yields

(40)     y t y e y yn( ) * ( ) *( ) ( )     1 1 0   .

This means that the economy moves fraction (1 - )[n +  + (1 + )] of the remaining distance toward 
y* each year.

(e)  The elasticity of output with respect to s is the same in this model as in the basic Solow model.  The 
speed of convergence is faster in this model.  In the basic Solow model, the rate of convergence is given 
by (1 - )[n +  + ], which is less than the rate of convergence in this model, (1 - )[n +  + (1 + )], 
since   /(1 - ) is positive.

Problem 1.13
(a)  The growth-accounting technique of Section 1.7 yields the following expression for the growth rate 
of output per person:

(1)  
 ( )

( )

 ( )

( )
( )

 ( )

( )

 ( )

( )
( )

Y t

Y t

L t

L t
t

K t

K t

L t

L t
R tK  









  ,

where K (t) is the elasticity of output with respect to capital at time t and R(t) is the Solow residual.
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Now imagine applying this growth-accounting equation to a Solow economy that is on its balanced 
growth path.  On the balanced growth path, the growth rates of output per worker and capital per worker 
are both equal to g, the growth rate of A.  Thus equation (1) implies that growth accounting would 
attribute a fraction K of growth in output per worker to growth in capital per worker.  It would attribute 
the rest – fraction (1 - K ) – to technological progress, as this is what would be left in the Solow 
residual.  So with our usual estimate of K = 1/3, growth accounting would attribute about 67 percent of 
the growth in output per worker to technological progress and about 33 percent of the growth in output 
per worker to growth in capital per worker.

(b)  In an accounting sense, the result in part (a) would be true, but in a deeper sense it would not: the 
reason that the capital-labor ratio grows at rate g on the balanced growth path is because the effectiveness 
of labor is growing at rate g.  That is, the growth in the effectiveness of labor – the growth in A – raises 
output per worker through two channels.  First, by directly raising output but also by (for a given saving 
rate) increasing the resources devoted to capital accumulation and thereby raising the capital-labor ratio.  
Growth accounting attributes the rise in output per worker through the second channel to growth in the 
capital-labor ratio, and not to its underlying source.  Thus, although growth accounting is often 
instructive, it is not appropriate to interpret it as shedding light on the underlying determinants of growth.

Problem 1.14
(a)  Ordinary least squares (OLS) yields a biased estimate of the slope coefficient of a regression if the 
explanatory variable is correlated with the error term.  We are given that

(1)          ln ln ln
* *

Y N Y N a b Y N
1979 1870 1870

     , and

(2)       ln ln
*

Y N Y N u
1870 1870

  ,

where  and u are assumed to be uncorrelated with each other and with the true unobservable 1870 
income per person variable, ln[(Y/N)1870]*.

Substituting equation (2) into (1) and rearranging yields

(3)            ln ln ln ( )Y N Y N a b Y N b u
1979 1870 1870

1      .

Running an OLS regression on model (3) will yield a biased estimate of b if ln[(Y/N)1870] is correlated 
with the error term, [ - (1 + b)u].  In general, of course, this will be the case since u is the measurement 
error that helps to determine the value of ln[(Y/N)1870] that we get to observe.  However, in the special 
case in which the true value of b = -1, the error term in model (3) is simply .  Thus OLS will be unbiased 
since the explanatory variable will no longer be correlated with the error term.

(b)  Measurement error in the dependent variable will not cause a problem for OLS estimation and is, in 
fact, one of the justifications for the disturbance term in a regression model.  Intuitively, if the 
measurement error is in 1870 income per capita, the explanatory variable, there will be a bias toward 
finding convergence.  If 1870 income per capita is overstated, growth is understated.  This looks like 
convergence: a "high" initial income country growing slowly.  Similarly, if 1870 income per capita is 
understated, growth is overstated.  This also looks like convergence: a "low" initial income country 
growing quickly.
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Suppose instead that it is only 1979 income per capita that is subject to random, mean-zero measurement 
error.  When 1979 income is overstated, so is growth for a given level of 1870 income.  When 1979 
income is understated, so is growth for a given 1870 income.  Either case is equally likely: overstating 
1979 income for any given 1870 income is just as likely as understating it (or more precisely, 
measurement error is on average equal to zero).  Thus there is no reason for this to systematically cause 
us to see more or less convergence than there really is in the data.

Problem 1.15
On a balanced growth path, K and Y must be growing at a constant rate.  The equation of motion for 
capital,  ( ) ( ) ( )K t sY t K t   , implies the growth rate of K is

(1)  
 ( )

( )

( )

( )

K t

K t
s

Y t

K t
  .

As in the model in the text, Y/K must be constant in order for the growth rate of K to be constant.  That 
is, the growth rates of Y and K must be equal.

Taking logs of both sides of the production function,  Y t K t R t T t A t L t( ) ( ) ( ) ( ) ( ) ( )        1
, yields

(2)  lnY(t) = lnK(t) + lnR(t) + lnT(t) + (1 -  -  - )[lnA(t) + lnL(t)].
Differentiating both sides of (2) with respect to time gives us

(3)   g t g t g t g t g t g tY K R T A L( ) ( ) ( ) ( ) ( ) ( ) ( )            1 .

Substituting in the facts that the growth rates of R, T, and L are all equal to n and the growth rate of A is 
equal to g gives us
(4)  g t g t n n n gY K( ) ( ) ( )( )            1 .
Simplifying gives us

(5)  
g t g t n n n g

g t n g

Y K

K

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

          

      

        

    

1 1

1 1
Using the fact that gY and gK must be equal on a balanced growth path leaves us with
(6) gY = gY + (1 - )n + (1 -  -  - )g,
(7)  (1 - )gY = (1 - )n + (1 -  -  - )g,
and thus the growth rate of output on the balanced growth path is given by

(8)  ~
( ) ( )

g
n g

Y
bgp 

    



1 1

1

   


.

The growth rate of output per worker on the balanced growth path is

(9)  ~ ~ ~
/g g gY L

bgp
Y
bgp

L
bgp  .

Using equation (8) and the fact that L grows at rate n, we can write

(10)  ~
( ) ( ) ( ) ( ) ( )

/g
n g

n
n g n

Y L
bgp 

    


 

      



1 1

1

1 1 1

1

   



    


.

And thus finally

(11)  ~
( )

/g
g

Y L
bgp 

  



1

1

  


.

Equation (11) is identical to equation (1.50) in the text.


